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Physics and Modeling of Compound Semiconductor Devices 

with Semi-Insulating and Native-Oxide Layers 
Introduction 

This final report summarizes the results of Scientific Research Associates, Inc. 

simulation of the lateral oxidation of Al As based oxides. 

The Physical Model 

The oxidation model used here has been discussed in previous reports. Briefly, 

in the first reporting period, as a means of checking some of the equations we exam- 

ined the standard Deal and Grove [1] model, a one dimensional elastic model for oxi- 

dation of films at least 300A thick. The model is one-dimensional. This model re- 

mains relevant today, although today's simulations allow for the presence of lateral 

stresses that can alter the shape of the interface. 

Within the Deal and Grove model, for oxidation to occur three stages must oc- 

cur: (i) the oxidizing species moves from the oxygen containing gas across the gas- 

oxide interface; (ii) the oxidizing species must move across the oxide region; and (iii) 

the oxidizing species reacts with the semiconductor at the oxide-semiconductor inter- 

face. Within the framework of this model there are two limiting situations of interest: 

The first is referred to as diffusion controlled where the rate of oxidation is limited by 

the availability of oxidant at the semiconductor-oxide interface. The second is referred 

to as concentration-reaction controlled where the oxidation rate is controlled by the 

concentration of oxidant at the semiconductor surface and by the rapidity with which 

the oxidation reaction can proceed. Ochiai, et al [2] in studying the lateral thermal 

oxidation of Al As in water vapor in vertical cavity surface emitting laser structures 

observed: (i) At high temperatures and long oxidation times, diffusion across the oxide 

was the controlling mechanism; (ii) At low temperatures and short oxidation times, 

oxide growth was found to be reaction limited. These conclusions were based upon 

implementation of the rate equations developed in reference 1. 



What is done experimentally? Two results illustrate. In [2] growth versus 

time was fit to the expression: x0
2 +ax0=bt In it was observed that for short oxida- 

tion times and thin oxide layers, this expression reduced to a linear growth law. At the 

pressures of- 1 atm and flow rates used in [2] the linear growth was considered to be 

reaction rate limited. This was confirmed by the observation that either doubling or 

reducing the N2 flow rate by half had no detectable influence on the growth rate, indi- 

cating saturation of the carrier gas. Alternatively, for long oxidation times and thicker 

oxides, or where oxidant diffusion across the oxide was the rate limiting mechanism, 

the oxidation followed a parabolic growth law. Very similar results were obtained by 

Naone and Caldren [3] where additionally the dependence of oxide growth on oxide 

thickness was also studied. Several observations were emphasized here: (i) The acti- 

vation energy for the oxidation reaction was higher for the thinner layers; and (ii) the 

oxide tip of thicker layers was noticeably blunter than that of the thinner layers. 

On the basis of the above results, as well as results of others it has become clear 

that for the AlAs oxidation model: 

1. Two-dimensionality exists due to the difference in the diffusion coeffi- 

cients of the oxide and that of the surrounding oxide. Additionally, the complex two- 

dimensionality is introduced because the oxidation front moves primarily in the hori- 

zontal direction, while stresses on the oxide are primarily in the vertical direction. 

2. A viscous and/or visco-elastic model must be used. 

To undertake this study we considered the computational region shown in figure 

1. The region of interest (or computational domain) consists of the four specific sub- 

regions: (1) the oxide, (2) the pedestal, (3) the cap and (4) the virgin AlAs material. 

Initially the overall structure is assumed to be rectangular. As oxygen is passed over 

the virgin AlAs material an oxide layer develops and penetrates into the virgin mate- 

rial. Stresses will develop primarily between the pedestal, the cap, the oxide and the 

virgin AlAs layers thus distorting the overall structure into a non-rectangular shape. 
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Figure 1. Initial Computational Region 

We are interested in predicting 

the time-dependent development of 

both the shape of the structure and the 

penetration of the oxide layer into the 

virgin AlAs material. To do this and 

to determine how the overall geometry 

of the device is distorted in time, the 

governing system of partial dif- 

ferential equations that describe the 

physics must be developed. Boundary 

conditions on the various surfaces and 

interface conditions between the 

various sub-regions must be 

determined. Finally a strategy must 

be developed for solving the system of governing equations with appropriate boundary 

and interface conditions so that the physics can be predicted. 

The Governing Equations 

For the structure of figure 1, Newton's second law and the basic principle of con- 

servation of mass describes the physics of the system in all four sub-regions. The oxi- 

dation process is assumed occur at temperatures that are high enough for the stress- 

strain relationship to be that of a fully viscous fluid. Hence Newton's second law is 

described by the so-called Navier-Stokes system of partial differential equations. The 

compressibility of the oxide and the surrounding materials is very small so that the 

materials may be considered to be incompressible although the densities of the various 

materials may differ. Under these assumptions, the time dependent conservation of 

mass and the Navier-Stokes equations are expressed by the partial differential equation 

as 

(1) 
dp 
dt 

= SfpV 

and 



(2)       d£L = -S/P-V*pVV + V*T 
w      dt 

Here p is the density, P is the pressure, T is the stress tensor and V is the velocity 

vector consisting of the Cartesian components. The stress tensor, r, is related to the 

velocity vector by the relationship 

(3)     T = juhv + vvT) 

where ju is the viscosity of the material, and may, in general, be position dependent. 

The superscript T refers to the transpose. 

The dynamics of the diffusion of the oxide concentration in the oxide layer is 

determined by the solution of the Laplace diffusion equation. Because of the physics 

of the situation the oxide is prevented from diffusing either into the pedestal or the 

cap. The governing equation takes the form 

(4a)     p— = V*DVC 
& 

where C is the concentration of the oxide and D is the diffusion coefficient. Actually 

equation (4a) was modified in a manner suggested by Yoshikawa, et al [4]. 

(4b)     p— = V.(£>VC - BSC) 

Here B represents the mobility of the diffusion material (the oxide) and S represents a 

stress tensor. The term BSC represents the surface interaction between the pedestal 

and cap with the oxide. It can easily be seen that the diffusion equation for the con- 

centration is not coupled to either the conservation of mass or the Navier-Stokes equa- 

tions. It will be shown that there is a coupling of the equations, but this is due to the 

interface conditions between the oxide layer and the virgin Al As. In the case of lateral 

oxidation the inner stress comes mainly from the boundary plane to the upper and 

lower layers that sandwich the oxide layer. 



The Boundary Conditions 

Let us consider first the boundary conditions used with the conservation of 

mass and Navier-Stokes equations. This discussion is for two-dimensional cases but 

could easily be expanded to three dimensions. Since the pedestal is attached there can 

be no velocity component normal to the bottom surface 'A-F. These two conditions 

can be expressed as 

(5) u = 0 

and 

(6) v = 0 

where u and v are the Cartesian velocity components. In addition, the boundary 

layer assumption is used for pressure, viz., 

(7) n*VP = 0 

Where n is the unit normal vector. On the surfaces 'I-L' and 'D-V the same condi- 

tions are used. 

On surface 'C-D' and lA-B' the conditions of equations (5) through equation (8) 

are again imposed. On surface 'B-C the same two conditions are imposed on the ve- 

locity components; for the pressure a specified pressure is prescribed. Finally an inter- 

face condition must be prescribed at the interface of the oxide and the virgin Al As ma- 

terial and here is where the coupling occurs with the oxide concentration. The gener- 

alized interface condition analogous to that used by Deal and Groves is specified as 

(8) F = ^C0« 

where /?' represents the density ratio of the oxide to the virgin material densities and 

ks is a transfer coefficient (sometimes called the coefficient of reaction) and Nx is the 

particle density of the oxidant molecules per unit volume of the oxide, a know value. 

C0 is the concentration at the interface, hence Equation 8 provides the coupling be- 

tween the conservation of mass and Navier-Stokes equations and the concentration 



equation. It is to be noted that Equation 8 is a vector and thus provides boundary con- 

ditions for both u and v velocity components. 

The concentration equation is somewhat different from the other governing 

equations as it is valid only in the oxide sub-region. In all other areas the concentra- 

tion is zero. Thus boundary conditions must be prescribed only on surfaces 'B-F\ 'F- 

G\ 'C-G' and lB-C. On surfaces lB-F' and CC-G' a symmetry or no flux condition is 

imposed, viz., 

(9) w»VC = 0 

On surface 'F-G" the generalized version of the boundary condition used by 

Deal and Groves is imposed. 

(10) rfVC = ksC0 

On surface 'B-C a transfer relationship of the form 

(11) -n*DVC = h(C*-C) 

is imposed where C* is the equilibrium concentration at the 'B-C interface. 

The above equations and boundary conditions represent the system of governing 

equations and boundary and interface conditions that describe the physics of the prob- 

lem of interest. It should be noticed that the concentration only depends on the gov- 

erning diffusion equation and a prescribed geometry, while the conservation of mass 

and the Navier-Stokes equations are coupled to the concentration through the interface 

Equation (8). Thus the coupling can be considered to be one way only - from concen- 

tration to the fluid dynamics and not vice versa. This will be use to simplify the solu- 

tion of the system of governing equations. 

Incompressible Flow Considerations 

One of the most difficult problems associated with the above equations is 

that the conservation of mass and the Navier-Stokes equations are numerically very 

complicated. This is due to the fact that when the flow is incompressible the govern- 

ing equations become very 'stiff and hence difficult to converge. Basically at very 



low Mach numbers the solution matrix becomes ill-conditioned leading to slow or 

non-convergence and, perhaps, to loss of accuracy. There are several techniques that 

have been developed over the last two decades to address this problem. All utilize it- 

erative techniques. In this study the technique of Chorin [5] was chosen because of its 

ability to obtain converged solutions and the experience that SRA personnel have with 

this technique. With this approach density, p, is replaced by the pressure coefficient, 

cp as a dependent variable. The conservation of mass and Navier-Stokes equations 

are recast in the form 

d 
(12)     a   v       y+V-pV = 0 

dt 

and 

(13)     Z-Zj- = -±pjjyc -V-pVV+V-T 8PV X  n Tl*\. 

where a is an arbitrary constant and the pressure coefficient, cp, is defined by 

P-P 
(14) S=T--^- 

where the subscript 'QO' refers to some reference condition. Equation (14) is identical 

to Equation (2) except for the transformation of dependent variables. Equation (13) 

will reduce to Equation (1) when a converged solution is obtained and the density is 

constant, viz., 

(15) V«T = 0 

The advantage is that Equation (12) will yield converged solutions for incom- 

pressible flows whereas Equation (1) will not. The factor a is critical to the rate at 

which a converged solution can be obtained and 'incorrect' values can lead to diver- 

gence. 



Overall Solution Technique 

Because of the use of the technique of Chorin to obtain converged solutions for 

the fluid mechanics, it is impossible to obtain one continuous time-dependent solution 

to all the governing equations. Instead the technique employed is to obtain a series of 

converged solutions with the physical geometry of the overall device being updated 

after each converged solution. In this manner a series of solutions similar to a series 

of snapshots is obtained to describe the physics of the device. Since the concentration 

equation and associated boundary and interface conditions are not coupled to the con- 

servation of mass and Navier-Stokes equations, the solution technique first obtains a 

solution to the concentration equation. Then a converged solution for velocity field is 

obtained from the method of Chorin. Once the new velocity field is obtained the ge- 

ometry (or grid) associated with the four sub-regions of the device can be calculated 

and the above procedure repeated to follow the time dependent solution of the device. 

The updating of the device geometry is done through the application of the equation 

(16)     X(t + dt) = X(t) + \?(f)dt 

where dt is an arbitrary time step chosen small enough to give a time accurate solu- 

tion. The vector X = xi+yJ where x and y are the Cartesian position coordinates. 

If this technique is applied directly in many cases problems will arise where coordi- 

nate lines can cross over each other after a period of time thus yielding negative geo- 

metric Jacobians. To prevent this from happening a technique that only applied Equa- 

tion (16) along certain lines was developed. Looking at figure 1 it can easily be seen 

that there are certain key lines that outline the skeleton of the structure. If these lines 

are prescribed, a new coordinate system, which in general will be non-orthogonal, can 

be generated and the overall solution can proceed. Note that this is possible because 

we are obtaining a series of converged solutions to describe our time dependent proc- 

ess. Again looking at figure 1, it can be seen that the key skeleton lines are those that 

describe the outer boundary of the device and the lines that describe the interfaces be- 

tween the four separate sub-regions. Once Equation (16) is applied to these lines a 

new geometric description of these lines is known at time t+dt given the distribution 

know at time t. The grid point description that defines these key lines can then be 

10 



modified to obtain a smooth distribution of points on these new lines. Having accom- 

plished this, one is now free to describe the new geometric representation of the four 

sub-regions. A necessary condition is that the grid points on common lines between 

sub-regions must be the coincident. A commonly used technique that does this is the 

so-call transfinite-interpolation mapping procedure (also known as Coon's patches). 

This technique works in one, two or three dimensions. For two dimensions, this tech- 

nique uses Hermite interpolation between the four specified curves that defines each 

of our four sub-regions. This technique tends to give a normal grid in regions adjacent 

to the four specified curves of each sub-region thus yielding approximate first deriva- 

tive continuity between the sub-regions, a very desirable characteristic of any grid. 

Previous Results 

Previously, qualitatively correct results had been obtained by just solving the dif- 

fusion equation. This obviously does not have the physics that one obtains by solving 

the conservation of mass - Navier-Stokes equations. When one solves the diffusion 

equation several assumptions must be made. First it is assumed that there is no trans- 

verse motion of the oxide layer. Secondly an assumption has to be made about the up- 

stream later motion, viz., that the upstream lateral velocity, W, is related to the veloc- 

ity at the oxide-virgin material interface, V, through the relationship 

(17)     W = (p'-l)V 

where only the lateral velocity component is considered. When this calculation was 

performed the results shown in figure 2 resulted. The figure 2 results show a 'pencil- 

like' interface, confined to the AlAs region. The calculations were performed with 

time accurate transients and permit a determination of the growth times. It is worth- 

while noting that the measurements of [3] show similar characteristics, see figure 3. 

11 



Figure 2. Oxidation contours within the AlAs layer, through solutions to the diffusion equation. 

FIG. 4. TEM micrograph of the oxide tip (dark region) of an 100 A AlAs 
layer oxidized at 450 °C for 80 min. 

Figure 3. TEM micrograph of an oxide tip. From reference [3]. 

Results 

To test out the solution procedure outlined above a test case was considered. 

Again referring to figure 1, the test case consists of a pedestal-cap sandwich surround- 

ing an AlAs virgin material. The device chosen has the following dimensions: 

(1) Line A-I= 1,000,000 Angstroms 

(2) Line A-B = 20,000 Angstroms 

12 



(3) Line B-C = 500 Angstroms 

(4) Line C-D = 9,500 Angstroms 

(5) Line B-F = 4,000 Angstroms - Initial condition 

A Cartesian grid was generated consisting of 100 grid points in the x direction 

and 70 grid points in the y direction. Location B (figure 1) was at grid point 3 ly and 

location C was at grid point 49y. Locations E, F, G and H were at grid point location 

25x. The grid point locations of all these points remained constant as the geometry 

was moved, i.e., the number of grids point in each of the sub-regions remained con- 

stant throughout the computation. The distribution of grid points was chosen in a 

manner such that larger numbers of grid points would be concentrated in regions 

where large gradients of dependent variable could be expected. This is done by non- 

uniformly distributing grid points along the skeleton lines previously described. Thus 

grid points were concentrated in the regions of the pedestal-oxide and cap-oxide 

boundaries and the oxide-virgin material interface. 

The model case had the following computational parameters: 

(1) Virgin material density - p = l.0gm/cm3 

(2) Mass transfer coefficient - h = 1.13xl04w/sec 

(3) Coefficient of reaction - ks = 0. \m I sec 

(4) Diffusion coefficient - D = 8.64x10~2 m21 sec 

(5) Viscosity - ju = S.64xl0~5kg/m-sec 

(6) Equilibrium Concentration -C* = 4.29x1022 / cm3 

These coefficients represent the parameters that uniquely define our problem. 

Uoo, Poo and I * (the reference velocity, pressure and length) were chosen as 1000 

A/sec, 1 atmosphere and 1000 Ä respectively. The ratio of the density of the virgin 

semi-conductor material to the oxide density, p', was initially chosen at 1.25, this 

variable being required for the imposition of the interface equation, Equation (8). 

This ratio will result in both the interface boundary between the oxide and the virgin 

13 



material moving in the positive x direction. In addition the upstream surface A-B-C-D 

will also be displaced in the positive x direction (see figure 1). A value of p' less 

than 1.0 will result in the upstream surface being displaced in the negative x direction. 

The initial task in setting up a run is to determine a choice of inner or iteration 

time steps that will result in rapid accurate convergence of the diffusion equation and 

the conservation of mass - Navier-Stokes equations. The choice of the a parameter in 

the conservation of mass, as explained before, is critical. Since we were only inter- 

ested in obtaining a series of converged solutions the inner or iteration time steps se- 

lected have no physical meaning. This was easily accomplished and it was found that 

initially that converged solutions to the diffusion equation for oxide concentration and 

the conservation of mass - Navier-Stokes equations could be accomplished in 250 

time or iteration steps. In both cases the initial residuals (or imbalance in the initial 

guess for the solution) were decreased by approximately five to six orders of magni- 

tude. It was found that converged solutions could be obtained even if the combina- 

tions of the iteration time step and the value of a were changed as much as an order of 

magnitude. Of course, the rates of convergence for the governing equations were 

slower than before. Having determined 'optimum' iteration parameters, the technique 

was then advanced in time to calculate the development of the oxide layer and the 

overall geometry of our device. 

Initially this test case was run with slip conditions on Surfaces D-L, C-D and 

A-B. Slip conditions were also used on the oxide surface B-C. This case was run for 

120 seconds. When the results of this run were plotted, it was noticed that the oxide 

layer sub-region was moving into the initial virgin material sub-region as expected. 

However the left-hand boundary of the oxide sub-region was also moving in the right 

direction at approximately the same rate as the oxide layer was moving into the virgin 

material. This is an unphysical. To prevent the above phenomenon from occurring 

the boundary conditions were changed to the conditions described in Equation (5) 

through Equation (7). 

The same test case (except in this case the initial oxide layer thickness was 

chosen as 500 Angstroms) was then run again for 240 seconds. The results of the ox- 
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ide region is shown in figure (4) corresponding to time = 120 seconds. The contours 

extend to 10% of the peak value and display a blunter edge than that of figure 2 which 

showed results for solutions to the diffusion equation. There is a negligible concentra- 

tion beyond this region (<10%) but it extends well beyond the Al As, as shown by the 

outlines of the oxide layer displayed in figure 5. The area of rapid transverse growth 

is in a region where the concentration level is relatively small. In fact the concentra- 

tion level at the oxide virgin material interface is about 0.02. We are currently inves- 

tigating this result to determine it's significance (if any!). The horizontal lines are a 

reference and correspond to the initial oxide thickness of 500 Angstroms.   The oxide 

layer initially grows at a relatively rapid rate and then with time the growth rate de- 

creases considerably. At time = 240 seconds the oxide layer has not changed much 

from the results at time = 120 seconds.   This is due to the fact that the boundary con- 

dition (Equation 8) determines the growth rate. Since as the oxide layer grows, the so- 

lution to the diffusion equation (Equation 4) yields smaller and smaller values of the 

concentration. Thus the growth rate decreases as the size of the oxide sub-region be- 

comes larger. The shape of the oxide region shown in these figures shows the effect 

of solving the conservation of mass Navier-Stokes equations. Unlike the Deal and 

Groves solution, the oxide layer can actually push aside or be pushed aside by the 

pedestal and cap. It is seen here that at all times there is a pinching in the center of the 

oxide layer, i.e., the pedestal and cap squeeze the oxide layer. At the far right hand 

side of the oxide the oxide pushes out into both the pedestal and cap. It should also be 

noted that the effect of the large pedestal and relative thin cap are not symmetric, i.e., 

if a horizontal line were drawn through y = 20,250 Angstroms the solution is not 

symmetric about this line. This is to be expected when the conservation - Navier- 

Stokes equations are solved. 

To further investigate this problem another test case was run. In this case, a 

device was chosen where the density ratio, /?', was very close to unity, viz., 1.005. 

Additionally, the initial transverse dimension thickness of the oxide layer was chosen 

as 250 Angstroms not 500 Angstrom as in the previous case. Because of the small 

value of p' the oxide layer grows very slowly even though the value of the concentra- 

tion at the oxide virgin material interface has a normalized value of approximately 0.8 

15 



after a time of 180 seconds. As can be seen from figure 6 the large transverse diver- 

gent section that was seen in the /?' = 1.25 case is not nearly as exaggerated. There is 

some thinning of the oxide in the region of a lateral distance of 5000 Angstroms, but 

again not nearly as much as was exhibited in the previous case. The lack of symmetry 

about the value of y = 20,125 Angstroms can be seen, but it also is less exaggerated. 
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Figure 4. Oxidation contours (from 10% to 100%) within the AlAs layer, through 
solutions to the diffusion and Navier-Stokes equations for a density ratio of 1.25. 
The physical time for this profile is 120 sec. 
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Figure 5. As in figure 4, with the addition of an outline of the oxidation region. 
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peak concentration. 
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Figure 6. Oxidation contours with the AlAs layer (from 80% to 100%), through 
solutions tothe diffusion and Navier-Stokes equations, for a density ratio of 1.005. 
The physical time for this profile is 180 sec 
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Conclusions 

In looking at the literature the two primary sources for two-dimensional calcula- 

tions that were found were Chin et. al [6]and Poncet [7]. Both of these investigators 

essentially solve the same set of governing equations. Chin solved a similar problem 

to that addressed above, but the computational domain was limited to the oxide only. 

No calculation was performed in either the virgin material or the mask. Poncet's prob- 

lem is somewhat different and he does solve the governing equations in two separate 

regions. However he does not solve the governing equations in the virgin material and 

in the masks. Thus neither of the investigators concerns themselves with the coupled 

interface problem between the oxide and virgin material that was attempted in our 

study. The SRA study in that sense is much more ambitious. It has demonstrated that 

the pedestal and the cap do have an influence on the physics of the computation and 

they can have a significant effect on the shape of the oxide sub-region. 

Earlier computations solving only the diffusion equation, figure 2, were encourag- 

ing in that they qualitatively predicted the shape of the oxide region. A blunter, but 

tapered shape was found for one set of parameters, and a blunt shape without tapering 

was found for another set of parameters. While a complete parametric study has not 

been undertaken the results do demonstrate the interaction of the cap and the pedestal 

with the oxide region, and suggest that additional source terms are needed in the inter- 

face to model the effects that occur between these regions. 

In general, a numerical procedure that solves the coupled system of partial differ- 

ential equations the growth of an oxide layer into a semi-conductor material has been 

developed. The numerical procedure allows for a variety boundary equation and al- 

lows for the overwriting of the governing equations in internal interface surfaces. So- 

lutions have been obtained for a variety of cases. 
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